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Abstract

Metamaterials are capable of attenuating undesired mechanical vibrations

within a narrow band-gap frequency range; however, real-world applications

often require adjustments due to varying loads and frequency content. This

study introduces a self-aware, thermo-active metamaterial, 3D-printed in a

single process using thermoplastic material extrusion. The adjustment of the

natural frequency and band-gap region is achieved through resistive heating

of conductive paths, which alters the stiffness of the base cell’s resonator. Ad-

ditionally, these conductive paths facilitate the detection of the resonator’s

excitation frequency and temperature, thereby eliminating the need for ex-

ternal sensors. This dynamic adaptability, experimentally demonstrated by

achieving a band-gap tuning range from 505 Hz to 445 Hz with a 17◦C

temperature difference, highlights the potential of these metamaterials for
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applications in smart structures across the aerospace, civil, and automotive

industries.

Keywords: metamaterials, 3D printing, thermo active, single process,

piezoresistivity, material extrusion

1. Introduction

Metamaterials are intricately designed geometric structures that exhibit

material properties not found in nature [1, 2]. These structures lead to tun-

able material characteristics such as negative or zero Poisson’s ratios [3, 4, 5],

effective Young’s moduli [6], negative coefficients of thermal expansion [7, 8],

and quasi-zero stiffnesses [9, 10]. The tunability of such properties makes

metamaterials great candidates for applications in low-frequency vibration

isolation [11, 12, 13], enhancement of sound transmission loss [14, 15, 16], or

attenuation of elastic waves in structures [17, 18, 19, 20]. Ma et al. (2023)

presented a tunable, locally resonant metamaterial that uses a chiral buck-

ling structure to achieve vibration isolation at low frequencies. The design

utilizes buckling to configure different stiffness levels that vary by up to

an order of magnitude, resulting in different bandgap frequency attenuation

ranges [12]. Similarly, Liu et al. (2024) presented a Kresling origami-inspired

compression-twist coupled metamaterial structure that combines different

unit cell designs to achieve bandgaps 350% wider than those of conventional

Kresling structures at low frequencies [13]. In the field of sound transmission

loss, Sal-Anglada et al. (2024) developed a multiresonant layered acoustic

metamaterial that uses coupled resonances and a zero-stiffness response to

create a triple-peak sound transmission loss effect [15]. Comandini et al.
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(2023) investigated the sound transmission loss of 3D-printed Hilbert fractal

acoustic metamaterials, providing an analytical formulation linking fractal

patterns and acoustic cavity resonances to the maxima of the sound trans-

mission loss [16]. For elastic waves attenuation, Hu et al. (2024) presented a

2D metamaterial wing model with bi-stable nonlinear resonators capable of

dissipating transient vibrations, achieving a dissipation rate of over 75% [18].

Additionally, Li et al. (2024) demonstrated the tunable attenuation of longi-

tudinal elastic waves in a metamaterial rod composed of piezoelectric semi-

conductor and piezoelectric materials, with a tuning capacitor exploiting the

Bragg scattering effect [17].

Bragg-scattering [21] and local resonant metamaterials [22] are the two

most common physical operation principles for elastic flexural wave manip-

ulation [23]. Bragg-scattering metamaterials utilize periodic structures that

create high impedance changes, causing the incoming and reflected waves

to cancel out via destructive interference. For example, Geng et al. (2023)

demonstrated this physical principle of flexural vibration suppression in pipes

by periodically attaching sleeves to the existing pipe structure, thereby al-

tering the effective cross-section of the pipe [24]. Bragg-scattering meta-

materials are effective for wavelengths comparable to the metamaterial’s

base cell length, but less suitable for lower frequencies due to size con-

straints [25]. Conversely, local resonant metamaterials incorporate periodic

local resonators, with their effectiveness relying not on the periodicity but on

the resonators’ spacing being much smaller than the target wavelengths [26].

When resonators induce a non-zero resultant force on the base structure,

a Fano-type interference [27] is created around the resonators’ frequencies,
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enabling attenuation in lower frequency ranges than those achievable with

Bragg scattering, thus overcoming its limitations [28].

Local resonant metamaterials have been succesfully utilized for vibration

attenuation [29]. Recently, the attenuation of flexural and longitudinal waves

was presented by Li et al. (2024) with a spiral acoustic black-hole metama-

terial, where the periodic cell consisted of a host structure and dual spiral

resonators [30]. Similary, two-dimensional periodic additive acoustic black

holes were proposed by Deng et al. (2024) to achieve vibration attenuation

and high loss factor via local resonances [31]. Xu et al. (2024) explored the

attenuation of torsional waves using a metamaterial shaft equipped with tun-

able local resonators possessing a quasi-zero stiffness. This effect is achieved

through an arrangement of electromagnetic elements and a flexible rod con-

nected in parallel, which collectively yield a quasi-zero stiffness effect [32].

Alternatively, Zhao et al. (2022) achieved band gaps through a carefully de-

signed 3D chiral mechanical structure that converts longitudinal waves into

transverse waves, resulting in attenuation of the longitudinal waves [33]. Yu

et al. (2023) employed star-shaped re-entrant lattices and locally rudder-

shaped struts made from two-phase materials to not only attenuate the vi-

brations within a desired frequency range, but also to achieve an effective

zero thermal expansion coefficient [34]. In contrast, Mazzotti et al. (2023)

presented a non-self-similar hierarchical elastic metamaterial that couples lo-

cal resonances with Bragg scattering and inertial amplification mechanisms

to achieve broadband bandgaps at various frequency scales [35]. Bragg scat-

tering and local resonances were also coupled with energy dissipation mech-

anisms using a two-dimensional square-lattice viscoelastic metamaterial pre-
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sented by Mei et al. (2023) through a concept of spatiotemporal damping.

Although the presented metamaterials exhibit exceptional performance, a

common limitation is that the frequency range of the band gap becomes

fixed once the design parameters are established.

Various physical principles can be used to alter a metamaterial’s proper-

ties during operation, such as piezoelectric effect [17], magnetostriction [36,

37], electrodynamic force actuation [38] or temperature-dependent mecha-

nisms [39]. Li et al. (2018) demonstrated broadband low-frequency wave

attenuation using resonant metamaterials equipped with adaptive mechani-

cal local resonators. the frequency-dependent stiffness of the resonators was

achieved using piezoelectric sensors and actuators [40]. Gao et al. (2023) in-

troduced broadband-gap active metamaterials with an optimal time-delayed

control strategy [41]. Alternatively, Gorshkov et al. (2023) presented theo-

retical aspects of actively influencing the stopband in acoustic metamaterials

using magnetorheological elastomers that change their stiffness when exposed

to an external magnetic field [37]. Zhang et al. (2024) presented a magne-

tostrictive phononic crystal beam capable of dynamically manipulating lon-

gitudinal elastic waves through external magnetic, stress, and thermal load-

ings [36]. Jaľsić et al. (2023) presented an active metamaterial cell capable

of achieving non-reciprocal sound transmission by using concurrent velocity

feedback loops with non-collocated sensor-actuator pairs, resulting in signif-

icant attenuation of vibration in one direction and increased transmission in

the opposite direction over a wide frequency band. Temperature-dependent

mechanisms offer another way to tune a metamaterial’s properties. Li et al.

(2019) proposed an electro-thermally tunable Hoberman spherical metama-
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terial. Utilizing a 3D-printed lattice and thermoelectric heaters, they suc-

cessfully tuned band gaps by exploiting the Young’s modulus-temperature

relationship of glassy polymers with Joule heating [42]. Li et al. (2023)

introduced a temperature-controlled quasi-zero-stiffness (TC-QZS) metama-

terial beam utilizing shape-memory alloys (SMAs) for tunable, low-frequency,

band-gap adjustment. By leveraging the negative-stiffness mechanism of an

SMA and a nonlinear geometrical structure, they demonstrated a capabil-

ity for broad-range frequency tuning with externally induced temperature

changes [43]. Ma et al. (2023) introduced a thermally actuated metamate-

rial unit cell capable of reversible contact-driven snapping, enabling morphing

structures that can sequentially snap into multiple locked configurations at

predefined temperatures [44]. Zhang et al. (2024) introduced a topology-

optimization strategy for designing elastic resonant metamaterials that en-

able thermally driven band-gap tuning to attenuate the flexural waves [39].

The complexity of metamaterial geometries often necessitates innovative

fabrication methods, making additive manufacturing an ideal choice due to

its ability to simplify multiple fabrication steps into a single process. Bi-

lal et al. (2017) demonstrated the use of thermoplastic material extrusion

(TME) in fully 3D printing two-dimensional phononic metamaterial plates

with resonant cylinders, showcasing the production of local resonant band

gaps [45]. Miranda et al. explored the creation of flexural wave band

gaps in multi-resonator elastic metamaterial plates, employing 3D printing

with photopolymer-jetting technology to study different lattice configura-

tions [46, 47]. Mizukami et al. (2021) presented 3D-printed locally reso-

nant carbon-fiber composite metastructures for the attenuation of broadband

6



vibrations, utilizing TME with steel masses attached to resonators post-

printing [48]. Lastly, Cai et al. (2022) presented a metamaterial beam de-

signed for flexural wave attenuation, featuring compliant, quasi-zero-stiffness

resonators partially fabricated with material extrusion [49].

TME enables the creation of smart functional structures beyond passive

metamaterials. This is achieved by integrating electrically conductive com-

ponents [50], sensor elements [51, 52], and actuation elements [53] in a single

fabrication process. It can leverage various physical principles for sensory

functions, including piezoresistive [54, 55, 56], piezoelectric [57, 58], and ca-

pacitive [59, 60], as well as for actuation purposes, such as dielectric [61],

thermally active [62, 63], and electrothermal principles [64, 65].

Thermally active and electrothermal principles are frequently employed

in the actuation of 3D-printed structures, as materials used in TME exhibit

significant changes in Young’s modulus, damping, and coefficient of thermal

expansion (CTE) in response to temperature and 3D-printing parameters,

as demonstrated by Krivic and Slavič (2023) [66]. Goo et al. (2020) showed

that single thermoplastic material with programmed anisotropic thermal de-

formation properties can be used to achieve localized bending and therefore

actuation [67]. Duan et al. (2022) demonstrated a 4D-printed structure

exhibiting reversible deformation, facilitating the movement of a soft crawl-

ing robot. Locomotion was achieved with a bilayer structure, containing

heating elements 3D-printed from conductive polyactic acid (CPLA) [68].

Similarly, Chen et al. (2023) utilized TME to create a quadruped robot

with a shape-memory polymer, actuated by the electrothermal effect [69]

and Wang et al. (2024) used electrothermal principle to actuate and control
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a 4D-printed origami, containing continuous fiber-reinforced composites [70].

Finally, Mostofizadeh et al. (2024) used 3D-printed lattice metamaterials

with a conductive coating to achieve up to 94% stiffness reduction by apply-

ing electrical current, inducing structural softening [71].

Conductive polymers used in TME can exhibit piezoresistive proper-

ties [72, 73], a characteristic extensively studied by Arh et al. [74]. Arh

and Slavič have explored its use in sensing, demonstrating CPLA’s effective-

ness in acceleration sensing across one and three axes [52, 75]. Additionally,

Hainsworth et al. (2020) employed 3D-printed conductive PLA in a soft

actuator designed to measure grip angles [76]. Furthermore, Palmieri et al.

(2021) incorporated piezoresistive 3D-printed elements within structures for

health monitoring, demonstrating the versatility and application breadth of

3D-printed piezoresistive materials [77]. It should also be noted that the con-

ductive properties of 3D-printed electric pathways can significantly depend

on the parameters of 3D printing [78, 79] and temperature [80, 81]. Dijk-

shoorn et al. (2024) demonstrated this dependency by fabricating a electric

metamaterial direct current concentrator with tuned anisotropic electrical

properties [82].

In this research, thermoplastic material extrusion is utilized to integrate

electrothermal principles and piezoresistive sensing, fabricating an active,

self-aware, locally resonant metamaterial cell. This cell is capable of adjust-

ing its resonator natural frequency via the electrothermal principle and to

detect the excitation frequency via the piezoresistive principle. The study

primarily focuses on the design, manufacturing, and testing of a single meta-

material cell. The research is organized as follows: the necessary theoret-
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ical background is provided in Sec. 2, the design of the metamaterial cell

is detailed in Sec. 3, the fabrication methods are described in Sec. 3.3, the

experimental methods are outlined in Sec. 4, the results are presented and

discussed in Sec. 5, and the capabilities of the metamaterial cell are further

outlined in Sec. 5.4.

2. Theoretical Background

This section provides a concise overview of the theoretical foundations un-

derpinning the study of locally-resonant metamaterials, which are designed

to attenuate elastic waves within a specific frequency range of interest. It

then delves into the principles of Joule heating, a mechanism by which the

properties of metamaterials can be modified. Finally, the concept of piezore-

sistivity is introduced, highlighting its application in enabling metamaterials

to possess self-awareness capabilities or to sense excitation frequencies.

2.1. Locally Resonant Metamaterials

Locally resonant metamaterials are composed of unit cells, each consist-

ing of a base structure and an attached resonator. These metamaterials are

capable of creating frequency-band-gap where free wave propagation is pro-

hibited, enabling vibration and noise attenuation [29]. Arising from Fano-

type interference between incoming and out-of-phase re-radiated waves by

local resonators [28], these band gaps do not require periodicity for their

formation; however, a sub-wavelength arrangement of local resonators is re-

quired [83]. It is essential for the natural frequency of the resonator, fres, to

be below the Bragg-interference-limit frequency, fλ/2, to ensure the resonant
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band gap’s formation [29]:

fres < fλ/2. (1)

At the frequency fλ/2, local resonators are spaced at half the wavelength λ

of the attenuation-targeted wave within the structure.

Primarily, the resonance frequency of the local resonator, fres, and the

mass ratio, rm, between the base structure and local resonator, influence the

metamaterial’s noise- and vibration-attenuation capabilities. The mass ratio

is defined as [29]:

rm =
mres

mbase

, (2)

where mres and mbase represent the masses of the resonator and base struc-

ture, respectively. An increase in the resonator frequency, while keeping the

resonator mass constant, raises the center frequency of the band gap. Con-

versely, enlarging the mass ratio rm without altering the resonator frequency

broadens the band gap. For details the reader is referred to other literature,

e.g.: [84, 85, 29].

2.2. Joule Heating

The band-gap frequency region can be modulated by exploiting the rela-

tionship between the Young’s modulus and the temperature in glassy poly-

mers with Joule heating [42]. Joule heating is a phenomenon where electric

elements produce heat when they pass an electric current. For a direct electric

current (DC), the heat generated in an element is equivalent to the electric

power dissipated within that element [86]:

Q = Pel = V I, (3)
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where Q denotes the heat generated in the electric elements, Pel is the electric

power, V is the voltage drop across the electric element, and I is the electric

current.

2.3. Piezoresistivity

Conductive materials used in thermoplastic material extrusion may demon-

strate piezoresistive properties, whereby their resistance alters in response to

mechanical strains within the material [74]. This property allows the mea-

surement of mechanical strains within the material, provided that the con-

ductive paths are appropriately designed. The piezoresistive effect can be

quantitatively expressed using the Voigt-Kelvin notation as follows [52]:

dρi/ρ0i = ξijεj, i, j = 1, . . . , 6. (4)

Here, dρi/ρ0i represents the change in relative resistivity, ξij denotes the

piezoresistive coefficients, and εj corresponds to the strains. Given the uni-

directional deposition of material in thermoplastic material extrusion, the

orthotropy can be assumed [87]. For more details on the piezoresistive effect

in 3D-printed structures, the reader is referred to the research by Arh et

al. [74].

3. Metamaterial Cell

This section introduces the concept and detailed design of an active meta-

material cell, designed to modulate its natural frequency and thereby alter its

band-gap characteristics via Joule heating. Initially, the fundamental design

and operational principles are discussed. This is followed by an examination
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of the metamaterial cell’s design considerations for single-process 3D print-

ing. The final part of the section provides an overview of the metamaterial

cell’s fabrication process.

3.1. General Active Metamaterial Cell Concept

18.8 mm

10
.8

 m
m

- PLA

- CPLA

resonator

base structure

(c)  Resonator:

(a)  Metamaterial cell: (b)  Base structure:

(d)  Beam-like spring:

Z-shaped conductive path

connection
terminals

+

-

inter-cell 
electrical

 connection

inertial mass

beam-like springs

conductive
paths

(e)  Current flow:

18.8 mm

0.1 mm

0.1 mm

0.1 mm

9.6 mm

electric
current
flow

top surface

Figure 1: Metamaterial cell design: a) active metamaterial cell, b) metamaterial cell’s base

structure, c) metamaterial cell’s resonator (base structure removed) composed of inertial

mass and 8 beam-like springs, d) metamaterial cell’s beam-like spring, e) electric current

flow direction through metamaterial cell
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As shown in Fig. 1, the active metamaterial cell’s design encompasses

a base structure (Fig. 1 b)) and a resonator (Fig. 1 c)). The resonator is

further composed of 8 beam-like springs (Fig. 1 d) and an inertial mass.

The band gap of the metamaterial is predominantly determined by the

natural frequency of the metamaterial and the mass ratio between the meta-

material’s resonator and the base structure [29]. In this research, the primary

objective is the design of an active cell able to modify the natural frequency

of the resonator (achieved by heating). Specifically, the resonator’s beam-like

springs are subjected to electric heating, targeting primarily the resonator’s

spring-like elements, thereby elevating their temperature. Given that the

spring-like elements consist of polymer, their mechanical properties, notably

stiffness, vary with temperature, experiencing a slight decrease for an in-

creased temperature change. The change in stiffness results in a change of

the resonator’s natural frequency within the metamaterial, subsequently af-

fecting the band gap’s location in the frequency domain.

The electric resistance of the conductive parts of a 3D-printed metamate-

rial cell increase with temperature [88]. Utilizing the established resistance-

temperature relationship enables an estimation of the metamaterial’s tem-

perature, particularly that of the beam-like springs, using electric resistance

measurements. Thus, the metamaterial cell also has the ability to detect

temperature.

Furthermore, the conductive paths are also employed to detect mechani-

cal oscillations, notably those of the cell’s resonator. Given that conductive

polymer-based materials often exhibit piezoresistive properties [74], their re-

sistance varies under mechanical loads. Mechanical load-based variations in
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the electric resistance are typical several orders of magnitude smaller than

those resulting from temperature changes; however, these changes are usually

on different time scales and therefore relatively easy to distinguish. By em-

ploying suitable frequency filtering, it becomes feasible to distinguish between

the quasi-static (temperature) and dynamic (mechanical loads) components

of resistance. This capability facilitates the measurement of the resonator’s

natural frequency, among other parameters.

3.2. Active Metamaterial Cell Shape Design For Single-Process 3D Printing

The base structure, shown in Fig. 1 b), incorporates relatively thick

conductive electric paths to minimize the electric resistance and consequently

reduce the heating of the metamaterial cell’s base structure. Moreover, it

is equipped with contacts designed for the electric interconnection of the

metamaterial cells in the longitudinal direction, as suggested in Fig. 1 b).

CPLA (conductive PLA) is used as the electrically conductive material, while

PLA forms the base structure.

The beam-like springs, shown in Fig. 1 c) and d), are designed to enable

heating across their full length with an approximately even distribution of

heat. The electric current’s direction is visible in Fig. 1 e). Additionally,

the beam-like springs are used to sense the inertial mass displacement. With

boundary conditions approximating those of a fixed-fixed beam, the conduc-

tive path is positioned to ensure either compression and neutral, or tension

and neutral strains along the conductive path. Consequently, the conductive

path adopts a ”Z” shape to maintain consistent deformation characteristics,

see Fig. 1 d). In the 3D-printing process for the beam-like springs, the lower

non-conductive part also acts as a foundational bridge for adding subsequent

14



layers, a process depicted in Fig. 2. The foundational layer anchors the

beam-like spring to the inertial mass and the base structure, allowing the

next layers to be deposited, following the proposed Z-shaped design. This

method eliminates the need for any support structures during the fabrication

of the beam-like springs.

The design of the resonator’s inertial mass (see Fig. 1 c)), within the

metamaterial cell focuses on maximizing the length of the beam-like springs

and ensuring their effective attachment to the resonator’s inertial mass. Si-

multaneously, it aims to maximize the mass within the limited space avail-

able. Two conductive sections are incorporated on the lower and upper parts

of the inertial mass, facilitating electric interconnections between the springs.

The central part of the inertial mass is non-conductive and serves as the mass

of the resonator.

(a) (b)

3D printer's nozzle

inertial mass base structure

1st layer bridge

- PLA

- CPLA 2nd and 3rd layer

beam-like spring

Figure 2: Beam-like resonator’s springs fabrication: a) initial bridging layer with PLA, b)

the rest of beam-like spring fabrication.

3.3. Cell Fabrication

The metamaterial cell’s fabrication employed a 3D printer, Toolchanger

by E3D, featuring four Hemera extruders (E3D), which enabled multi-material

3D printing without the undesired mixing of materials. G-code generation
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was performed using PrusaSlicer 2.7.1, see Fig. 3 a). The layer height was set

to 0.2 mm for both the base structure and the resonator’s mass, whereas a

finer 0.1-mm layer height was chosen for the layers containing the resonator’s

beam-like springs. The extrusion paths had a width of 0.45 mm, with a print-

ing speed of 80 mm/s. An infill of 100% was selected, aligned with the X

and Y axes, accompanied by 2 perimeters. The heated-bed temperature was

maintained at 60◦C, and the printing temperatures for both PLA and CPLA

were set to 215◦C, using an extrusion multiplier of 0.95. Fig. 3 b) showcases

the 3D-printed metamaterial.

Following the 3D printing, electric contacts to the metamaterial cell were

established: a wire was soldered to a copper tape, followed by the applica-

tion of conductive silver paint on the printed metamaterial cell, onto which

the copper tape was then affixed. Subsequently, the connection was coated

with superglue to secure the copper tape to the printed metamaterial. The

completed electric contacting process is depicted in 3 c).

As the final step, the metamaterial is coated with black paint, as demon-

strated in Fig. 3 d), to achieve a consistent emissivity factor across its sur-

face, allowing more accurate temperature-field measurements. Additionally,

a reflective sticker was added to the resonator’s inertial mass for the laser

vibrometer measurements. Following this preparation, the sample is ready

for measurement.
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(d)(b) (c)

(a)

1st Layer:

2nd Layer: 3rd Layer:

Base layer:

- PLA

- CPLA

Figure 3: 3D-printed metamaterial cell: a) g-code vizualization, b) after 3D-printing pro-

cess, c) after electrically contacted, d) after black paint coating with reflective sticker for

laser vibrometer measurement.

4. Experimental Methods

The experiment aimed to establish three characteristics of the active

metamaterial cell: a) electric characteristics - electric resistance with re-

spect to temperature, b) mechanical characteristics - first natural frequency

with respect to the voltage applied across the metamaterial cell, and c) self-

awareness, sensor characteristics - the excitation-frequency detection capabil-
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ity. All the metamaterial cell’s properties were concurrently assessed within

the same experimental framework, the setup and schematics of which are

illustrated in Fig. 4 a) and Fig. 4 b), respectively.

(c)

(a)

(b)

INA128P

Consecutive measurement [/]

[V
]

vibrometer thermal camera electrodynamic shaker metamaterial cell

accelerometer

temperature field
spring 1

spring 4
spring 3
spring 2

base structure
inertial mass

Figure 4: Experimental setup: a) physical experiment, b) acquisition schematics of electric

quantities, c) measurement sequence.

As depicted in the electric circuit in Fig. 4 b), the voltage across the

metamaterial cell (VMM) and the supply voltage (Vsupply) are measured. The

voltage across the shunt resistor can be deduced as Vshunt = Vsupply − VMM.

Utilizing the reference resistor Rshunt = 2660 Ω and the calculated voltage
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Vshunt, the electric current through the metamaterial cell is determined. Sub-

sequently, the electric resistance of the metamaterial cell is calculated from

the electric current and the voltage VMM. Additionally, the voltage across the

metamaterial cell VMM is filtered through a high-pass filter (cut-off frequency

fc = 0.5 Hz) and amplified with an instrumentation amplifier, with the out-

put voltage labeled as Vsensor. This method facilitates the measurement of

minor resistance changes attributed to dynamic loads on the metamaterial,

manifesting as subtle dynamic voltage fluctuations across the metamaterial,

given that the reference resistor and metamaterial cell function together as

a voltage divider.

Based on the voltage Vsensor, the dynamic component of the metamaterial

cell’s resistance can be computed. The relationship in the frequency domain

between Vsensor and VMM is [89]:

Vsensor(ω) = VMM(ω)G
i ωRHP CHP

1 + i ωRHP CHP

, (5)

where Vsensor is the output measured voltage on the instrumentation ampli-

fier, VMM is the voltage across the metamaterial, G is the gain factor of the

instrumentation amplifier, RHP and CHP are the resistance and capacitance

of the high-pass filter with a cutoff frequency of 0.5 Hz, ω represents the

angular frequency, and i is the imaginary unit. For the loads with frequency

content well above the cutoff frequency of the high-pass filter, we can assume:

Vsensor(t) = VMM, AC(t)G, (6)

VMM(t) = VMM, DC + VMM, AC(t), (7)

where VMM, AC is the dynamic part of the voltage, and VMM, DC is the quasi-

static part of the voltage across the metamaterial cell. Based on the shunt
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resistor Rshunt and the measured voltages VMM and Vsupply, the resistance of

the metamaterial cell is:

RMM(t) = Rshunt
VMM(t)

Vsupply − VMM(t)
. (8)

In the context of detecting dynamic loads, we are only interested in the

dynamic part of the resistance RMM, AC, identified as:

RMM, AC(t) = Rshunt
VMM, AC(t)

Vsupply − VMM, DC

, (9)

assuming that VMM, DC ≫ VMM, AC(t). Considering Eq. (6), Eq. (9) is

rewritten as:

RMM, AC(t) = Gtotal Vsensor(t), (10)

Gtotal =
1

G

Rshunt

Vsupply − VMM,DC

, (11)

where Gtotal is the overall scaling factor that relates RMM, AC and Vsensor.

From Eq. (11), it is evident that Gtotal varies with Vsupply.

The metamaterial cell is heated by appliying the voltage VMM. The tem-

perature field is observed using a thermal camera (FLIR A10). The tem-

perature fields of the upper visible beam-like springs, the resonator’s mass,

and the base structure are monitored individually. The average temperature

from each area is calculated, as depicted in Fig. 4 a).

To measure the natural frequency of the metamaterial cell’s resonator,

the metamaterial cell is clamped to a electrodynamic shaker (LDS V406)

and subjected to a sinusoidal sweep from 100 Hz to 900 Hz, with an acceler-

ation amplitude of approximately 4 g (g = 9.81 m/s2). During this process,

the excitation acceleration aexc is recorded using a reference accelerometer
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(DYTRAN 3097A2T), and the metamaterial cell resonator’s response is mea-

sured with a laser vibrometer (Polytec VibroGo). Concurrently, all the elec-

tric values and the metamaterial cell’s upper-surface temperature field are

measured. Time-domain signals are filtered with an analog low-pass filter

at Nyquist frequency of 12.8 kHz (sampling rate is 25.6 kHz) and then pro-

cessed through a digital bandpass filter, with cutoff frequencies set between

100 and 900 Hz. Subsequently, the transmissivity T (f) is identified from the

time-domain signals of the acceleration aexc and the velocity vres, using:

T (f) =
Sva

Saa

1

i 2 π f
, (12)

where Sva is the cross-spectrum between the velocity of the mass vres

and the acceleration of the base structure aexc, Saa is the power spectrum of

the acceleration of the base structure aexc, and f is the frequency [90]. The

resonator’s natural frequency is determined from the amplitude spectrum

T (f).

Utilizing the dynamic component of the metamaterial cell’s resistance

RMM, AC and the excitation acceleration aexc, the frequency-response function

KR can be formulated:

KR(f) =
SRa

Saa

, (13)

where SRa represents the cross-spectrum between the change in resistance

RMM, AC and the acceleration aexc. The frequency response function KR

describes the metamaterial cell’s dynamic resistance behavior RMM, AC in

response to vibrational excitation at various frequencies.

The measurement is conducted repeatedly at various supply voltages

Vsupply, ranging from 10 V to 60 V (resulting in different temperature con-
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ditions in the metamaterial cell). The measurement procedure is depicted

in Fig. 4 c). The metamaterial cell is subjected to three cycles of thermal

loading, with a three-minute interval between consecutive measurements to

allow the metamaterial cell’s temperature field to stabilize.

5. Results and Discussion

This section presents and discusses three characteristics of the 3D-printed

active metamaterial cell. First, it examines the relationship between the elec-

tric resistance and the temperature, indicating the cell’s temperature-sensing

capability. Next, attention is given to the mechanical properties, particularly

how the natural frequency changes with applied voltage, demonstrating the

cell’s ability to adjust its band gap dynamically. Furthermore, the metama-

terial cell’s self-awareness or sensor features are discussed, highlighting its

environmental interaction potential. Finally, the collective findings on these

characteristics are analyzed to explain how they contribute to the active

behavior of the metamaterial cell.

5.1. Electric Characteristics

Fig. 5 shows a clear relationship between the metamaterial’s electric re-

sistance and temperature, primarly attributed to the resistance change of the

beam-like springs. After the first thermal cycle a slight decrease in resistance

is observed. This phenomenon is attributed to the conductive components

of the polymer aligning or forming enhanced electric connections in the pres-

ence of the electric field, particularly as the temperature approaches the

glass-transition temperature Tg of PLA [91]. This proximity to Tg facilitates

more facile movement of the molecular chains [66].
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While heating the beam-like springs, a temperature increase is also ex-

perienced by the metamaterial’s base structure and the resonator’s inertial

mass, with a maximum temperature difference of approximately 10◦C. Con-

sequently, the observed changes in electric resistance are not exclusively at-

tributable to the springs but also, to some extent, to the base structure and

mass. At room temperature, the total electric resistance of all the conductive

paths within the metamaterial base structure and resonator’s inertial mass is

1.2 kΩ, while the overall electric resistance of the metamaterial cell is 6.4 kΩ.

Since beam-like springs account for approximately 81% of the total electric

resistance of the metamaterial cell it is reasonable to assume that the pre-

dominant share of the electric resistance change is caused by the beam-like

springs.

Electric resistance in beam-like springs can also be influenced by thermal

strains arising from the different coefficients of thermal expansion (CTE) of

PLA and CPLA, coupled with the different Young’s moduli between PLA

and CPLA. However, for the printing directions of beam-like springs (see

Fig. 3), results from [66] and additional measurements indicate that the

CTE of PLA is approximately 102 µm m−1K−1, while the CTE of CPLA is

approximately 108 µm m−1K−1. This slight difference in CTE is unlikely to

cause a significant increase in resistance due to thermal strains. Additionally,

the measured Young’s moduli of CPLA and PLA with respect to temperature

did not differ significantly in the temperature range of interest (25◦C−45◦C).

The heatmap images in Fig. 5 reveal slightly uneven heating along the

springs. Uneven heat generation is most likely caused by inconsistent Joule

heating due to varying resistivity in the 3D-printed beam-like springs. This

23



variability arises from slight differences in printing parameters and slightly

higher resistance between adjacent 3D-printed traces, a known issue in 3D-

printing using thermoplastic material extrusion [79, 80]. Regardless, as shown

in Fig. 5, the metamaterial cell’s electric resistance serves as a viable means

to estimate the springs’ average temperature. With an average tempera-

ture change of 17◦C, the electric resistance of the metamaterial cell alters

by approximately 2.6 kΩ, or 38% relative to the initial resistance at room

temperature, which is consistent with the literature [81].
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Figure 5: Electric characteristics of metamaterial cell: a) temperature field for selected

measurements with shown averaging regions, b) average temperature of selected regions

for each consecutive measurement, c) resistance of metamaterial for each consecutive mea-

surement, d) relationship between resistance and average temperature of metamaterial

cell’s beam-like spring elements.

5.2. Mechanical Characteristics

The transmissivity T (f) (12) is shown in Fig. 6 a). It is observed that

the natural frequency decreases with an increase in voltage VMM, and concur-

rently, the amplitude response at the natural frequency declines, likely due

to enhanced mechanical damping at elevated temperatures. Increased damp-

ing at elevated temperatures is expected to broaden the stop-band frequency
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range and reduce the peak attenuation within the stop-band region [28]. The

natural frequencies, extracted from the amplitude spectra, are presented as

a function of voltage across the metamaterial cell in Fig. 6 c), for the 2nd

and 3rd cycles. The relationship is fairly linear with an R-squared quality of

fit of R2 = −0.978. The decline is approximately 1.52 Hz/V, which, at an

average temperature difference of 17°C, amounts to a change in the natural

frequency of approximately 60 Hz.
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(a) (b) (c)sensitivity increase

Figure 6: Mechanical and sensor characteristics of metamaterial cell: a) transmissiv-

ity T (f) between inertial mass acceleration and base-structure acceleration - amplitude

spectrum, phase spectrum and coherence, b) frequency-response function KR(f) between

resistance RMM, AC and base structure acceleration aexc - amplitude spectrum, phase spec-

trum and coherence, c) relationship between metamaterial cell’s natural frequency f0 and

VMM.

5.3. Self-Awareness, Sensor Characteristics

In Fig. 6 b), the frequency-response function KR (13) between the mea-

sured dynamic part of the metamaterial’s resistance RMM, AC (10) and the

excitation acceleration aexc is displayed. At lower VMM, lower resonance peaks
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are observed in the KR amplitude spectrum (Fig. 6), mirroring the behavior

seen in the transmissivities T (f). With higher supplied voltages VMM, there

is a noticeable increase in the resonance peaks despite a diminished mechan-

ical response at resonance relative to lower voltages (see Fig. 6), suggesting

an increased sensitivity to the mechanical excitation of the metamaterial cell

at elevated temperatures. More examples of metamaterial cell’s time-domain

response to excitation are presented in Appendix A.

Fig. 6 b) illustrates that the coherence Cxy between the RMM, AC and aexc

signals strengthens as the excitation frequency approaches the metamaterial

cell’s natural frequency, showcasing its effective natural frequency detection.

In the sub-natural frequency region at lower VMM (lower temperatures), the

lower coherence indicates a decreased signal-to-noise ratio, as the measured

signal levels decrease while noise levels remain constant. The drop in coher-

ence at 450 Hz is likely due to electrical grid noise, with a base frequency

of 50 Hz and higher harmonics, including 450 Hz, affecting the metamate-

rial cell’s RMM,AC measurement. However, an increase in the correlation

at elevated temperatures, including in the sub-natural frequency region, en-

hances the detection of excitation frequencies below the natural frequency,

indicating improved performance across a broader frequency range. This en-

hancement is attributed to two factors: elevating the power-supply voltage

increases the measured voltage Vsensor, but also increases the metamaterial

cell’s temperature, thereby heightening its sensitivity at elevated tempera-

tures. Despite these variables, the metamaterial consistently demonstrates

proficiency in detecting its natural frequency with the sensitivity KR ranging

from approximately 0.15 Ω/g to 0.3 Ω/g.
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5.4. Metamaterial Cell’s Active Capabilities

The study demonstrates that applying a 40 V voltage difference or in-

ducing an average 17°C temperature increase to the metamaterial cell leads

to a shift in its natural frequency by approximately 60 Hz or approximately

12% of the initial natural frequency. This capability facilitates the precise

adjustment of the metamaterial’s band gap to the specific frequency range

where vibration attenuation is desired. Upon incrementally increasing the

voltage VMM by approximately 8 V, an average frequency shift of approxi-

mately 12 Hz was observed within three minutes, serving as a conservative

estimate for the system to reach steady state. This observation suggests that

the metamaterial cell is capable of adjusting its frequency by at least 12 Hz

within a period of 3 minutes or less. The response time can potentially be

decreased by using different materials and implementing design changes. De-

spite its response time, the metamaterial design is well-suited for applications

with gradually changing excitation profiles, such as those in turbine engines

during aircraft cruising, machining operations in precision machinery, or sce-

narios where operational changes occur due to manufacturing inconsistencies

or material aging.

Additionally, the metamaterial’s ability to self-assess the excitation fre-

quency enables the implementation of a feedback mechanism. Altough not

shown in this research, this mechanism can adjust the applied voltage in re-

sponse to changes in the metamaterial’s properties over time, ensuring con-

sistent performance despite the inherent variability in the mechanical and

electrical characteristics of 3D-printed components.

The research further identifies the quasi-static electrical resistance com-
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ponent of the metamaterial cell as an effective indicator of its average tem-

perature. An average temperature change of 17°C alters the cell’s resistance

by approximately 38% relative to its initial value at room temperature (see

Fig. 5 d)). This temperature-sensing capability is crucial for monitoring the

proximity to the glass-transition temperature (Tg), at which point the ma-

terial may undergo permanent deformation or alteration, especially under

resonant conditions. Thus, temperature monitoring serves as a preventive

measure against potential structural failure.

6. Conclusions

A thermo-active, self-aware metamaterial cell was introduced, fully re-

alized through a single 3D-printing process with the capability to adjust

its natural frequency. Adjustment is facilitated by resistive heating of the

conductive paths within the resonator’s beam-like springs, altering their stiff-

ness and, consequently, the natural frequency. Such modulation enables the

tailoring of the metamaterial cell’s band-gap region. With a 40 V differ-

ence applied across the metamaterial cell or an average 17◦C temperature

increase, the natural frequency is observed to shift by approximately 60 Hz

or 12%, exhibiting a close-to-linear relationship.

Additionally, the metamaterial cell possesses the capability to sense tem-

perature fluctuations and prevent a temperature increase above the glass-

transition temperature; an average temperature variation of 17◦C in the

beam-like springs results in an approximate 38% variation in the metamate-

rial cell’s quasi-static resistance.

Furthermore, the metamaterial cell’s excitation frequency can be mea-
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sured using the same conductive paths via the piezoresistivity phenomenon,

rendering the structure self-aware. When the excitation frequency is near its

cell’s natural frequency, the excitation acceleration of 1 g produces an ap-

proximately 0.15 − 0.3 Ω change in resistance. Additionally, it was observed

that the detection sensitivity increases with an increase in temperature.

Metamaterials made from the presented metamaterial cell, when appro-

priately controlled, can adapt their band-gap region in response to environ-

mental changes. This feature has potential applications in aerospace, auto-

motive, and civil engineering, where an adaptive response of the structures

is essential to maintain a safe, vibration-free, and noise-free environment.
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Appendix A. Time domain metamaterial cell’s response

Fig. A.7 shows time-domain response to a pure sine base acceleration ex-

citation (see Fig. 4). The dynamic resistance RAC,MM is shown as a response

at 400 Hz, metamaterial cell’s natural frequency and 550 Hz.
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(a) (b) (c)

Figure A.7: MM cell’s dynamic resistance RAC,MM over time at different VMM: a) response

at 400 Hz, b) response at natural frequency, c) response at 550 Hz.
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